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ABSTRACT
The care taking and maintenance of a plant is often considered as a
task that consumes considerable time. However, the advancements
in the area of Internet of Things (IoT) and agriculture may help
reduce the investment of time needed for agricultural care. This
paper presents "SmartPlant", which assists users in taking care of
their plants through accessible insights on a web application and
automates several tasks, e.g. watering of plants. In the development
process of SmartPlant, three other services have been used, which
include: sensor data, a hosting provider and a plant database called
Trefle.io, which is accessible through an API. A variation of sensors
have been employed to retrieve data such as soil moisture, tem-
perature and water levels. We delivered a prototype and provided
a description for the remaining necessary technology needed to
create a scalable solution that allows novice users to practice indoor
gardening with no prior knowledge in botany.

1 INTRODUCTION AND MOTIVATION
Advancements in IoT devices for agriculture do not only make the
industrial and agriculture area more efficient, but also the homes of
people [16]. The maintenance and care taking of plants is often a
time consuming job, but has been shown to relieve stress and other
mental health problems [21]. Knowledge about ensuring the right
growth, nutrients and the right amount of moisture is often absent
by people [14]. The goal of this paper is to develop a self-sustaining
smart plant which is accessible through a web application, called
"SmartPlant". SmartPlant supports individuals in maintaining their
indoor plants, which is especially interesting for novice users in the
gardening community, such as children and people with little time.
SmartPlant helps one to keep track of soil humidity, air humidity,
temperature, brightness, and the water level of the water reservoir.
This brings valuable data, collected by the various sensors, to the
user which assists them in the care taking of their plant.

This paper is written from an information science perspective.
All knowledge about botany is gathered from external sources. This
allows for a paper focused on creating an IoT service for plants.
Online there are many guides on how to gather sensor data from
one plant, such as [7] [1]. However, the knowledge on how to create
a network of plants or create a sustainable service for automated
gardening seems to be missing. Thus, to fill this gap we detail the
infrastructure of an automated indoor amateur gardening service.
To design a plant care-taking service that can be used by anyone,
we created the following research question:

How can we design a service using technologies from informa-
tion science that allows users to do indoor gardening with little to
no prior knowledge in botany?

As a proof of concept we have built a service that can accept
SmartPlant data and view this for a user in a web application that
is hosted on the server of an external party. The rest of this paper
details the steps made to built this basic version of SmartPlant, and
discusses how this basic version can scale to a commercial service.

SmartPlant works as a service, where the user can buy a plant
care-taking program that expires after it’s used. Today’s services
are often built upon other services [5]. SmartPlant is no exception
to this. For SmartPlant three other services are used: sensor data, a
hosting provider and a plant database which is accessible through
an API. These services are implemented in different ways. The
implementation of sensor data is described in 4.2: sensors. The
implementation and selecting a hosting provider is described in 4.3:
servers. Lastly, the implementation of a plant database is described
in 4.4: Data gathering.

2 RELATEDWORK
Plants that send an e-mail when the humidity reaches below a cer-
tain level have been developed by [14]. The researchers connected
a sensor that measures the humidity of one plant and programmed
the software to mail one or more users when the humidity was low.
The application sends one or various notifications, telling the user
what the plant needs. According to the researchers the user feels
more connected to the plant and creates emotional bonds by inter-
acting with its plant. They also mention how they could measure
the happiness, irritation or sadness of the plant by measuring the
soil.

Researchers [18] developed an online garden community where
people could get advice and information about gardening. They
developed an interactive online platform that provides community
groups and smart gardening advice where people could connect
and interact with each other. One could model their water tank and
monitor its behavior under different circumstances. For example,
simulate the most efficient way of determining the size, area, soil
and watering for the plant owned by the user. However, they do
explicitly mention that technology is the last thing people think of
when gardening. Thus, gardeners could propose to be a challenging
group to reach.

The advancements made in the area of augmented reality do
not go unnoticed in the context of smart gardening. Okayami and
Miyawaki [16] developed a smart garden through the use of aug-
mented reality (AR). They aimed to guide home gardeners with
gardening activities and at the same time measure the positions
and viewing point of the user. By applying AR the gardener could
be guided with determining the location where to plant the seed
or plant. The gardener also got information about the distance be-
tween each plant and would be informed about how large the plant
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will eventually grown, because people that are new to gardening
do often not know how certain plants would grow.

To make smart gardening a working product, sensors are neces-
sary to be implemented to track things like humidity, amount of
sunlight, and water needs. For example, [2] looked into a smart irri-
gation system to automatically water plants, using a Wireless Sen-
sor Network (WSN). They used soil humidity sensors and electro-
valves to track when the plant needed water and to give it water
when needed. These were programmed with TinyOS and were
then sent to a Java application with the use of a MySQL database.
The system was connected to a PC via USB. However, to make it
fully wireless, without the USB connection to the PC, either WiFi
or Bluetooth is necessary. Because of its broader bandwidth and
flexibility WiFi is the better option. Another option is WiMAX, but
this is much less compatible and not very often used in devices
for consumers [8]. The sensors will then not be connected to a PC,
but to another microcontroller or microprocessor, like an Arduino
UNO, Raspberry Pi, or a NodeMCU. Advantages of the NodeMCU
are that it has a built-in WiFi module, unlike the Arduino UNO,
and it is cheaper than the Raspberry Pi. The NodeMCU is widely
used in IoT services with sensors [20]. For example, the ESP8266
(the WiFi module on the NodeMCU) has been used before to make
an irrigation system. Singh & Saikia [22] created this system with
multiple sensors, like a water flow sensor and soil moisture sensor,
to automatically water multiple crops for farming.

According to Arcuri [3], building exploitable online services is
often done using a Micro-Services architecture. Hyper text Transfer
Protocol (HTTP) is a protocol that can be used to have Micro-
Services communicate over a network. HTTP uses a set of com-
mands read, write and update values over the web. Microsoft [15]
provides a guidelines to create a RESTful Application Programmable
Interface (API), that uses these HTTP commands to create an easy
to use API.

2.1 Competition in the market
Some of the major players in the smart gardening market are Plan-
tui6, AeroGarden, and Click & Grow. According to Oprea and
Alexandra [17], the products and services of these companies have
the following characteristics.

Platui6 uses hydroponic growing (growing plants in water in-
stead of soil), uses ”combined white and red LED-light for greater
efficiency” (p. 14) and does not come with an application. AeroG-
arden has the same characteristics. The only difference between
AeroGarden and Plantui6 is that Aerogarden does have a mobile
application, called AeroGarden Wi-Fi. Last, Click & Grow uses soil
to grow the plants. The company promises an optimal soil solution.
Their plants are bought as cups. However, Click & Grow doesn’t
come with an LED lamp or a mobile application.

3 INTERACTION DESIGN
This section describes the interaction between the actors and in-
terface of the system. During this report we will discern between
SmartPlant, SmartPlant Pot and the SmartPlant application. When
we refer to SmartPlant we mean the service as a whole. The Smart-
Plant Pot is the actual plant pot, which is described in subsection .
Lastly, the SmartPlant is the application with the interface where

users of SmartPlant can manage their plant. The SmartPlant appli-
cation is described in subsection 3.2.

3.1 Actors
There are three actors in our system: the user, the SmartPlant Pot
and the administrator. In the following sections the role and activi-
ties of these users will be discussed.

3.1.1 The User. The user is the consumer that bought a Smart-
Plant (or more than one) and now wants to track how their plant
is doing via the interface. They first need to create an account on
the SmartPlant application. After that they can login and visit the
dashboard (as shown in figure 3). Here, the user can register their
SmartPlant and specify the right plant program. Different plant pro-
grams can be bought in the store. When clicking on their registered
SmartPlant, the user can see the outputs of the different sensors in
the SmartPlant and if the water reservoir needs to be filled up (see
figure 6. The user can also get notifications when their plant might
flourish more in different circumstances, like having more sunlight.

Figure 1: Schematic representation of the SmartPlant Pot

3.1.2 The SmartPlant Pot. The SmartPlant Pot has three inte-
grated sensors that measure light, temperature, air humidity, soil
humidity to analyse the environment of the plant (see figure 1).
Furthermore, a water reservoir with a water level sensor is inte-
grated in the Pot, which can be refilled by the user (for which they
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will get notified when necessary) via an easy-to-access spout. The
sensors are described more in detail in section 4.2. The sensors are
connected to the NodeMCU (also inside the Pot), which is powered
by a battery pack to make it fully wireless, so the SmartPlant can
be put anywhere in the room without the need of a nearby power
plug. This battery pack is surrounded by a secure panelling to avoid
leakage from the water reservoir. The NodeMCU is the central hub
in the SmartPlant that sends the data from the sensors to the in-
terface every three hours via WiFi (again, to make it completely
wireless with no need of an ethernet cable). It also interprets the
data it receives from the sensors and will activate the water pump
to give the plant water when necessary.

3.1.3 The Administrator. The administrator has to perform sev-
eral tasks, which when the service grows, can be automated. For
these tasks the administrator can access pages, which are only ac-
cessible for user accounts with the role of administrator. The first
task is that every time a new SmartPlant Pot is manufactured it
must be registered in the database. The system should know which
SmartPlant Pots there are and to whom they are assigned. Every
new SmartPlant Pot gets a sticker on the bottom, with a unique
serial number and password. Its the administrator’s task that these
SmartPlant Pots are added to the database. Adding these codes to
the database can be partly automated, with the use of barcode scan-
ners. The second task is that the administrator must run a script
which loads the latest data from the Trefle.io API on a weekly basis.
This task is further described in subsection 4.4. As the SmartPlant
service grows, the task of the administrator will shift more towards
a customer service perspective. The administrator can then help
user’s with technical issues in using the application and configuring
the SmartPlant.

3.2 The Interface
A web application built on the world wide web provides a platform
which is accessible through a web browser. This makes it an ideal
platform, that could be reached from any location. Duan et al. [9]
mentions how a application that is widely accessible would be a
good foundation for applications and knowledge based systems.
This is mainly due to the readability, portability and accessibility
the web offers. However, one would require a stable internet con-
nection to be able to connect to the web application. A smart device
(e.g. smartphone, laptop, desktop or tablet) is required which is able
to establish a connection to the internet using either WIFI, 2G, 3G,
4G, 5G or LAN (Ethernet)1. One of the advantages of developing a
web-based application is that it removes the necessity to develop
the application for different operating systems, since any smart
device, as previously mentioned, possesses a web browser2.

The final design and web-application is presented below. Figure
2 presents the login screen of the application. This is the landing
page of each user that is trying to access the system, unless they
are already logged in through a previous session.

When the user has an account he/she can login using their cre-
dentials, otherwise they have to register in order to create a account.

1https://www.digitalunite.com/technology-guides/using-internet/connecting-
internet/how-connect-internet
2https://www.sitepoint.com/browsers-website-support/

Figure 2: Login of the web-application

When the user has logged in they get presented the homepage as
shown in figure 3.

Figure 3: Homepage of the web-application

All SmartPlant Pots that have been registered will be presented
on this page. However, the section "My plant pots" will present
empty, when no plants have been registered. One has to activate
their product first, which could be done by going to the "Register
a new pot" page. On this page (see figure 4) one can activate their
pot using the credentials given in the package of their purchase.

After the SmartPlant Pot has been registered one has to go to
the "Choose a plant program" page to choose the specific program
needed for their plant. New plant programs can be bought in the
store.

In order to access the analytical information of the plant, one
has to click on the name given, which is the plant "Hendrik" in this
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Figure 4: Register a plant pot

program.png

Figure 5: Choose plant program

case. This will redirect the user to the following page, as presented
in figure 6. One could see the different kinds of data and values that
are coming from the various sensors (i.e. brightness, water level,
air, moisture). Also, when the water level reaches below 20%, the
application will give a warning, notifying the user: "Alert! Water
level is low!".

Figure 6: Analytical information about the SmartPlant Hen-
drik

4 SYSTEM DESCRIPTION
This section gives a description about the hardware and software
used, the internal processes, services and architecture.

Figure 7 in Appendix A presents the overview of the system archi-
tecture. This architecture displays the overall flow of data, behavior
and interaction amongst the various components of the SmartPlant.
SmartPlant is made of four main components, namely; the back-end
functionality, web application, database server and the NodeMCU.
Five different sensors have been used, as can be derived from the
architecture, which will be further described in the next section.
These sensors send data, with an interval of three hours, to the
NodeMCU3, which is an open source Internet of Things firmware. It
3https://github.com/nodemcu/nodemcu-firmware

is a hardware component that connects through a WiFi module and
is used to process and control the sensors and water pump and to
retrieve and send the data. The LAMP server is used to run Apache
HTTP, the webserver. This server processes the HTTP requests and
instructs the NodeMCU which program to run(e.g. basil program or
tomato program). Information such as sensor data, plant programs
and user data are kept on the database server. The SmartPlant ap-
plication is written in the front-end languages HTML, CSS and the
server-side scripting language PHP. The web-application is used
for the user to access the analytics about their plant and provides
the user with an interface to keep track of the plant analysis. We
leverage Trefle4 API to gather plant specific data with regard to
the minimum and maximum plant requirements ( e.g. temperature,
brightness, moisture). By combining these various components,
it therefore bridges the physical and digital world by linking and
connecting these various hardware components and software all
together.

The overall flow of data of these components can be interpreted
as: Every SmartPlant is connected to a variation of sensors and
to the internet through a NodeMCU. The generated sensor data
is transmitted and stored in a MySQL database which runs on a
LAMP server. In this database the user data and plant programs are
also stored. A web application allows users to register their Smart
Pot, get insights of the plant’s growing environment and load plant
programs to the SmartPlant. The plant program is a growing pro-
gram dedicated to a specific kind of plant which manages the water
pump and informs the user about the optimal values for each sensor,
so the the user can control the humidity, temperature and bright-
ness to the optimal condition. Every three hours the SmartPlant
autonomously sends the current sensor data to the database. In case
a sensor malfunctions, the user is warned (see section 5.3. The fol-
lowing subsections will further describe the individual components.

4.1 Protocols
In order to maximize the functionality of the SmartPlant, using
the appropriate protocols can extend application possibilities. This
chapter focuses on describing which protocols were selected for
use and why others were taken for consideration.

4.1.1 Communication protocols. HTTP vs. MQTT A widely
applied protocol for IoT purposes is MQTT. This is considered to be
a lightweight machine-to-machine messaging protocol. The consid-
eration for this protocol was because of the fact that many other IoT
devices are able to correspond with each other when implementing
MQTT. However, during the development of the SmartPlant, it was
decided that the hardware system would not communicate with
other MQTT-devices. Therefore, a review on what would be the
most efficient protocol for this application resulted into selecting
HTTP as the preferred protocol. The SmartPlant uses in terms of
networking very simple message interaction and HTTP is perfectly
able to fulfill this task. Another reason for using HTTP was that it

4https://trefle.io/
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allowed the server-side system to be developed more easily, suit-
able for the limited amount of time that was available during the
development process.

Ethernet vs. WiFi During the first prototyping phases, the
SmartPlant hardware was built around an Arduino Uno as the
central hub. However, while further designing the application of
the SmartPlant, it quickly became clear that the end product would
have to be wireless in order to be a viable product. This would also
mean the internet connection of the SmartPlant would have to be
wireless and therefore implement the use of WiFi. The Arduino was
exchanged for a NodeMCU as this small development board has
an implemented WiFi module. Another option would have been
to extend the Arduino with a WiFi board. This option would have
been more expensive and would also have consumed more space
within the SmartPlant design.

Setting up a new SmartPlant After a user acquires a Smart-
Plant, a short setup protocol has to be run through. This is done by
powering the SmartPlant on, which is done by pressing a button.
On the concept design, this button might be placed on the bottom
of the pot. After doing so, the SmartPlant will be in a "setup-phase".
This means the SmartPlant broadcasts a local Wi-Fi hotspot named
"SmartPlant-setup" as SSID. This local Wi-Fi hotspot has with lim-
ited access to the SmartPlant interface. When a connection is made
between the SmartPlant and a Wi-Fi capable device, the user is able
to configure the system by opening a new session in a web-browser
to access a local web-page (for example 192.168.1.101). On this web-
page, the user is able to configure the Wi-Fi connection between
the SmartPlant and the Wi-Fi network that is available in the area
the SmartPlant is placed in. After this is successful, the SmartPlant
is fully operational.

4.1.2 Security protocols. To ensure the security, privacy, and
integrity of our customers’ data, the communication between the
customers’ client (i.e. mobile application and web browser) and
Smart Plant’s server runs over a bidirectional encryption called
Hypertext Transfer Protocol Secure (HTTPS). HTTPS is a combina-
tion of the Hypertext Transfer Protocol (HTTP) and the Transport
Layer Security, which allows safe data communication over the
World Wide Web [11]. This encryption authenticates the accessed
website and prevents eavesdropping and tampering, meaning that
the customer is securely communicating with Smart Plant’s server
without interference of third parties [12]. The encrypted proto-
col combination (i.e. HTTPS) is widely used over the internet by,
e.g., banks, e-mail clients, payment transactions, e-commerce and
corporate information systems [10].

To further implement security measures and ensure only autho-
rized access to our customers’ personal accounts, we integrated the
bcrypt message-digest algorithm to hash and salt passwords[19].
It leverages a one-way (i.e. impossible to revert) mathematically
algorithm to convert the provided password, during the registering
and log in process, to a fixed size[13] and adds random additional
input to improve its security[6].

4.2 Sensors
The SmartPlant is able to measure, monitor, and interact (on) with
four different hardware sensors to generate an indication of how
well the plant is doing and if it needs attention. In this section, each

sensor is described technically while also describing its practical
implementation. At the end of this section, communication between
the sensors and the communication hub (NodeMCU) is described.

4.2.1 Temperature and air humidity. The amount of water a
plant might require depends on the dryness of the soil, tempera-
ture and the air humidity. The DHT11-sensor is a widely available
sensor, which is very affordable, and measures both air humidity
and temperature. An integrated 8-bit micro-controller processes
the combined data and communicates through a single-pin output.
The sensor needs 5V power which is a commonly used voltage on
many development boards. The DHT11 can measure temperatures
between 0-50 °C with an error range of ± 2 °C and humidity per-
centages between 20 and 90 with an error range of ± 5 percent. The
pricing of an individual DHT-11 sensor varies between €4,- and
€5,-.

4.2.2 Soil humidity. Soil humidity is measured through a soil
moisture sensor. The sensor used for the SmartPlant prototype was
developed byVelleman and is described as the VMA303. Comparable
to the DHT11-sensor, it functions at a power source of 5 volts and
provides its output digitally through a single pin. The VMA303
consists out of a kit of 2 sensors (soil humidity sensor + water level
sensor) which is often priced between €4,- and €5. The soil humidity
sensor is shaped in the form of two prongs which are placed into
plant soil .

4.2.3 Water level. The SmartPlant has an automatic watering
systemwhichmakes use of a water reservoir. This allows the user to
refill this reservoir with larger intervals compared to the intervals
of watering the plant directly. However, the water reservoir will
eventually be emptied by the automatic watering system. To prevent
this, the water reservoir (integrated into the pot) is provided with
a water level sensor, installed into the bottom of the reservoir. This
sensor functions at a voltage of 5 volts and provides digital output
through a single data pin. The sensor used in the prototype is part
of the earlier described VMA303 kit, costing around €4,- and €5,-
making it very affordable. The sensor measures if there is contact
with water and sends a "HIGH" signal when in contact and "LOW"
signal when not. When it outputs "LOW", the water reservoir needs
to be refilled via the spout.

4.2.4 Light sensor. The sensor used in the SmartPlant prototype
is commonly described as a photoresistor. The photoresistor is
placed in a 5 volts circuit and depending on the amount of light
which reaches to sensor surface, resulting to a variance in the
analog output at the other side of the 2-pin sensor. These type of
sensors are widely used in various electronic appliances and due
to simple technology very inexpensive. They are commonly priced
around €0,20 each. In our prototype, a 10K Ω resistor is used to
protect the photoresistor from voltage spikes which can cause it
to malfunction or break. In order to effectively use analog data, a
scale is used to determine the light status. To give an example, the
sensor’s output is interpreted at a maximum of the value "1000"
when being in direct sunlight. By defining a scale the system is
able to distinguish levels of light the plant receives. As an example:
all values in the range of 700-1000 are qualified as "in sunlight",
ranges between 400-699 are qualified as "moderate lighting", ranges
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between 150-399 are qualified as "low lighting" and every value
between 0-149 are considered to represent no light at all.

4.2.5 Sensor communication. The NodeMCU boards functions
as a hub for receiving sensor data and processing this to useful in-
terpretations. As described, all sensors communicate over a single
sensor pin. As the NodeMCU has both digital and analog inputs,
almost any sensor can be connected easily. All sensors consume
power, provided by the power outlets on the NodeMCU board,
which is powered itself by a battery pack. The SmartPlant is con-
figured to send and receive data with an interval of three hours to
efficiently consume energy and not create a sensor data overflow.

4.3 Servers
To host the web application and database we leverage the service of
a third party hosting provider. The team currently does not posses
the technical knowledge, resources and skill to configure and secure
a server, therefore SmartPlant runs on a managed dedicated server.
The hosting provider manages the server with its expertise on
configuration, security, monitoring and backups. The possibility
and room for future growth to handlemore traffic and data storage is
mandatory. Therefore this option was considered carefully to allow
for scalability in case the user base and performance of SmartPlant
exceeds the server capacity. In terms of costs, the preference leans
towards leveraging the service of a third party over having an own
server, as hardware does not have to be purchased and no dedicated
personnel to manage the server is needed.

4.4 Data gathering
All data from the SmartPlants is loaded into a centralized MySQL
database. The structure for this database is illustrated in figure 8.
In previous research [17], a similar database structure has been
proposed. However, we found that two simplifications could be
made in the researchers’ database structure. The simplifications
made on the structure are the removal of different device types
and the removal of categorisation on plant programs. We don’t use
different device types, because every SmartPlant should be modular.
Meaning that a user must be able to choose which sensors they want
to activate and deactivate. That also means that the database must
accept each value, and each absent value. The second simplification,
removal of Plant categories, was made because this categorisation
is already made in the external API, Trefle.io, that we use.

The database structure consists of five tables. Central to this
structure is the Plant table, which contains the programs that are
loaded on each plant pot. This table only contains relations to other
tables, and a Start- and EndTime for the program. The EndTime
column is left empty until the program is over, or manually stopped
by the user. The Plant table has three relations. The first relation is to
the Default Plant table. The Default Plant table contains a template
for the optimal growth aspects of type of plant. This template
provides data for how often the water pump should provide water
to the plant and tells the user if they should move the plant to a
zone where there is a different temperature, brightness or humidity.
The second relation is to the Sensor Data Template. In this table
all the data that is created by the sensors is gathered. Since the
sensors can break, or be removed by the user, some of the rows may
have empty columns. The third relation is to the Plant Pot table.

In order to deliver a scalable solution each SmartPlant pot comes
with a unique identification number and password, which is used to
identify and keep track of the customers. These unique set of values
are pre-registered in the database and registered as "isUsed" is 0
(i.e. not active). Whenever a SmartPlant Pot is registered through
the web application, the value "isUsed" is set to 1, as seen in figure
8. To connect to the SmartPlant Pot the IP address of the pot is
needed, because we send data over the HTTP protocol. This IP
address is stored under IP Address, which can accept either an IP4
or IP6 address. This connection is further described in subsection
5.1. The last table, Plant Pot table has a relation with the User Table
via the UserID key. The user table contains all users. Users log in
with a username and password. Their e-mail-address is registered
for future marketing applications, such as news letters, and for the
administrator to be able to communicate with them when there is
an update or something is wrong.

Listing 1: A call to trefle.io which returns the values for one
of their plants
cURL h t t p s : / / t r e f l e . i o / ap i / p l a n t s / 1 0 9 7 9 4 ?

token=xxx

TheDefault Plant table gathers data fromTrefle.io. This API came
out in January 2019, two months before writing paper, and is still
in an Alpha stage. The API is maintained by a single person. After
using the API, it seems to be rather unstable. Relatively often than
other well-known websites, we got "502 bad gateway" errors, when
attempting access the Trefle.io website. Since botanical information
about plants doesn’t change that often and we regard the API
as unstable, we decided to limit the amount of calls made to the
API. Instead of calling this API every time a user wants to know
information about their plant, we have an admin run a script on
a weekly basis which performs a GET call, as seen in listing 1, to
the API and gathers all the latest information regarding the plants
we use in our application. In listing 1 it can be seen that the GET
call requires an ID of the plant. This is stored in the table Default
Plant under TrefleID. The data is then stored in Default Plant table,
which the SmartPlant application queries when a user requests
information about their plant through our application.

5 DISCUSSION
So far we’ve described the motivation, theory, interaction and com-
ponents for building SmartPlant. In this section we will bring all
this together and describe how the service should function as it
grows and how potential errors can be solved.

As is described throughout sections 3 and 4, we’ve built and
tested SmartPlant with one plant. However, we we’re unable to
add a second SmartPlant due to time and cost limitations. Thus,
the description that follows in this section is based on theory and
expertise of the researchers.

5.1 Connecting SmartPlant Pots
To create a network of SmartPlant Pots we use a Client-Server
architecture [3]. within SmartPlant the server is the hosting party
where the website and database are ran as shown in the architecture
in figure 7. The clients in the service are the SmartPlant pots, which
is controlled by aNodeMCUmodule. This NodeMCU is connected to
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the end-users WiFi, via the method that is described in 4.1.1 and has
its own small server. On this small web server a HTML script, with
dynamic data can be posted. Additionally, the NodeMCU can send
data to a hard-coded URL or IP address outside the local network
[1].

Within the architecture, as described in figure 7, it’s shown that
there is communication between the NodeMCU, its WiFi module
and the LAMP server. The arrows connecting from the NodeMCU to
theWiFi module is the NodeMCU posting its latest sensor data to its
own little server with one HTML page. Next, the server on the WiFi
module, now functioning as a client, is sending the LAMP server a
message containing its IP address within the local home network
of the user, the serial number of the Plant Pot and its password.
This IP address is accepted through a PHP script and stored into
the MySQL database (see figure 8) in the Plant Pot table in the row
with the corresponding Serial Number. This step is repeated every
time the NodeMCU restarted, or reconnected to WiFi.

Now that the SmartPlant central server knows the IP address
of the NodeMCU it can perform HTTP GET and PUT commands
to this IP address. The path where the NodeMCU stores its data
is static, as shown in listing 2, and is not stored in the database.
The GET command is performed every 3 hours and retrieves the
latest sensor data from the HTML page that is generated by the
NodeMCU. The GET command returns a JSON file, which can be
interpreted by a script on the SmartPlant server. A GET command
and it’s returned value is shown in pseudocode in listing 2. The
PUT command is performed every time a user selects a new plant
program in the SmartPlant application, as shown in figure 5 under
subsection 3.2. The NodeMCU provides the ability to add a basic
authorization header with the Flask library [23]. This authorization
header is sent with every GET and PUT call to authenticate that it is
the SmartPlant central server who is sending the request. The value
for the authentication header is set statically when programming
the NodeMCU, and is set to the password that is on the bottom of
every SmartPlant Pot.

Listing 2: Psuedo code representing a GET call to one of the
SmartPlants
cURL h t t p s : / / < Smar tP l an t pot IP addre s s >
/ s e n s o r d a t a ? token=xxx

Re tu rns :
{

" P l an tPo t ID " : 1 23 ,
" p l an t ID " : 4 ,
" s en so rDa ta " : {

" a i rHumid i t y " : 1 2 ,
" s o i lHum id i t y " : 1 8 ,
" t empe ra tu r e " : 2 4 ,
" b r i g h t n e s s " : 6 00 ,
" wa t e rLeve l " : 222

}
}

Occasionally the NodeMCU will need to be updated with new
Plant Programs and security patches. The NodeMCU provides a

class for updating the NodeMCU via internet through the HTTP
protocol, called ESPhttpUpdate [4]. This method requires a static
IP address and a path for the patch file location. As the service
grows, more HTTP calls are made by the service. The status results
of these calls must be logged. The administrator can then check
these logs, to find if any errors occur when clients make their calls.
In order to do this, the administrator could use the generic HTTP
error code categories [15]. If the administrator notices an increase
in errors, then they can act upon this. More specific error cases are
described in section 5.3.

5.2 Resilience against breaking of sub-services
As described in the previous subsection, both the current IP address
of each NodeMCU as it connects to WiFi and the patching function
for the NodeMCU require a static URL. This means that as soon as
the SmartPlant Pot is programmed and shipped, this static URL can
never be changed. If we ever lose the domain name of SmartPlant
after the first SmartPlant Pots are shipped, they will become useless.
Luckily, the NodeMCU programming interface has a method which
can check if the host is available [4]. Thus, we can manually code
an exception with a second, and even a third host, if the first host is
unavailable. Because we want to be less dependent of one hosting
party, we can host a full copy of the website at a second hosting
party.

To prevent data-loss we make both a daily and monthly back-up
of the central database. These get stored on the server of a second
hosting provider, so that if the first hosting party has a problem, the
service can continue without to much interruption. Additionally if
Trefle.io breaks, we already have all the current data stored in our
own database. This way we could continue with the current data
and hire a botany expert to add or update plant programs when
necessary.

5.3 Resilience against breaking of components
Of course the hardware can break as well. Since the Pot has many
different components, there are a lot of different errors the Smart-
Plant can give because of malfunction of one of the parts. If the
NodeMCU stops working for some reason, the Web App will give
a notification that the SmartPlant can not read data anymore and
either your SmartPlant needs to be repaired or replaced. In the
PHP script that can accept sensor data, each sensor value is read
individually and inserted into the database. This way if one of the
sensors returns an error, the other sensor values are still accepted.
All sensors of the NodeMCU, even temperature, return values as a
positive integer. If the sensors returns no value, a -1 is automatically
returned. In the SmartPlant application a -1 value is interpreted as
a missing or broken sensor, which can then be displayed to the user
through the interface. Furthermore, each sensor has a range of val-
ues that are logical for indoor use. For example, if the temperature
sensor returns a value of 90 degrees Celsius, an error is given on the
interface which depicts the unlikely high value. Since the NodeMCU
is the core of the SmartPlant, all functionality of the SmartPlant
will be lost, so either a quick repair by a technically-skilled user or
a replacement SmartPlant Pot is necessary.

If one of the sensors breaks, there will also be a notification in the
interface that certain data cannot be read anymore. Since the data
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is read from every sensor separately, not everything will be broken.
Some functionality will be lost, but probably the SmartPlant can still
work, unless it is the soil humidity sensor, because then the plant
will not get automatically watered. If it is the DHT11 sensor or the
light sensor, there should not be too big of a problem, only that the
application can not advise the user anymore about the environment
of the plant. If the water level sensor quits working, the user needs
to refill the water reservoir without notification. However, since
the user probably had the SmartPlant for a longer period of time
already, they will know how often the Pot needs a water refill. If
the water pump fails, the soil moisture sensor will pick this up
eventually, since the soil will only get dryer, and this data will then
correspond to a notification that the water pump is broken. The
last item of hardware that can break, is the battery pack. When the
Pot is low on energy, the user will be notified in the app, but can
easily replace the batteries themselves through the bottom of the
Pot, just like they are used to in other battery-powered products.

Since the hardware is all integrated in the Pot, it will not be easy
for the user to replace them. However, since the Pot will not be
too expensive and sending a technician over to the user is more
expensive, the best solution is to just replace the Pot. When the
user does have the technical skills to replace or repair the parts
themselves, a guide is provided in the Web App to show them how
it is done, since there is an access point from the outside of the pot
to the area of the sensors and the NodeMCU to replace or repair
the parts.

6 CONCLUSION & FUTUREWORK
This paper presented a complex system called "SmartPlant", in
which users can interact with their plant through a web interface.
The aim of this paper was to deliver a scalable solution that allows
novice users to practice indoor gardening with no prior knowledge
in terms of botany. SmartPlant fulfills this purpose by keeping track
of the soil humidity, air humidity, temperature, brightness, and the
water level of the water reservoir. This brings data, collected by the
various sensors, to the user which assists them in the care taking
of their plant. Additionally, the task of regularly watering a plant
is automated. To test this system a prototype of the SmartPlant Pot
and the SmartPlant application were developed and connected. We
believe therefore that the aim of this paper is met. However, due
to the limited time and scope of this project, we were unable to
create a network of SmartPlant Pots or validate the usefulness of
SmartPlant for the users. Once a network of SmartPlant Pots is built,
user surveys and interviews could be conducted in order to further
enhance the system. Future work also contains the automation of
several processes. These points are described in the next section.

6.1 Future work
As stated in subsection 5.3, SmartPlant can return a number of
errors, based on the range of values each sensor should return.
Through user experience testing we could come up with a list
of errors that is based on (a combination of) illogical values, and
provide the users with tips on how to solve these issues. This user
experience testing could also be useful for testing the service in
general and see what users like and don’t like and what could be
improved. This could also be done with more in-depth interviews

and surveys. When the product is in use, there will also need to
be more plant programs available in the store, since we want the
SmartPlant to be compatible for every indoor plant. To add further
application use, a furtherly improved version of the SmartPlant
could be made weather-resistant and therefore suited for outside
use. It would be interesting to provide further research on how the
SmartPlant can be made suitable for outside-purposes.

Furthermore, currently there are some flaws in terms of scalabil-
ity and efficiency. For example, for each SmartPlant the administra-
tor has to manually create the serial ID and password. In order to
further enhance the system in terms of scalability and efficiency,
this has to be automated in the future. Another issue is that the
NodeMCU requires a static URL, as mentioned in section 5.2. This
needs to be addressed in the future since we currently have no solu-
tion other then programming a second and third host address. Also,
the data from the NodeMCU to the server is not secured, which
should be addressed when SmartPlant is used on a large scale.
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7 APPENDIX
7.1 Appendix A

Figure 7: Overview of the system architecture
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7.2 Appendix B

Figure 8: Overview of the relational database
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